Course of Study-Specific Examination

Regulations for the Master's Course of Study

Construction and Robotics

at RWTH Aachen University dated November 5, 2019

In the Third Revised Version

Dated March 18, 2022

Published as a Complete Version

Please note: This publication is an English translation. Only the German original of these regulations as published in the Official Announcements of RWTH Aachen University (“Amtliche Bekanntmachungen”) is legally binding.

Based on §§ 2 (4, 64) of the Higher Education Act of the State of North Rhine-Westphalia (Higher Education Act; HG) dated September 16, 2014 (Law and Official Gazette of the State of North Rhine-Westphalia; GV. NRW p. 547), most recently amended by Art. 1 of the Act to Amend the Higher Education Act dated November 25, 2021 (GV. NRW, p. 1210a), RWTH Aachen University has issued the following regulations:
Contents

I. General ..3

§ 1 Scope of Application and Academic Degree ...3
§ 2 Objectives of the Course of Study and Language Provisions ..3
§ 3 Admission Requirements ...3
§ 4 Standard Period of Study, Curriculum, Credit Points, and Scope of Studies7
§ 5 Obligatory Attendance in Classes ..8
§ 6 Exams and Exam Deadlines ..8
§ 7 Types of Exams ..8
§ 8 Assessment and Grading ..9
§ 9 Examination Board ...10
§ 10 Repeating Exams or the Master’s Thesis, Loss of the Right to Take an Exam10
§ 11 Deregistration, Non-Attendance, Withdrawal, Deception, Non-Compliance10

II. Master’s Examination and Master’s Thesis ...11

§ 12 Type and Scope of the Master’s Examination ...11
§ 13 Master’s Thesis ...11
§ 14 Acceptance and Assessment of the Master’s Thesis ...11

III. Final Provisions ..12

§ 15 Viewing of Examination Records ..12
§ 16 Entry into Force, Publication, and Transitional Provisions12

Appendices:

1. Objectives of the Course of Study
2. Curriculum
3. Guidelines for internships to Gain Practical Professional Experience
I. General Comments

§ 1 Scope of Application and Academic Degree

(1) These regulations apply to the Master’s course of study in Construction and Robotics at RWTH. They only apply in conjunction with the currently valid version of the General Examination Regulations (GER) in the relevant applicable version, supplementing it with an additional set of study-specific regulations. In cases of doubt, the provisions of the General Examination Regulations take priority.

(2) Students who successfully complete the Master’s course of study are awarded the academic degree of Master of Science RWTH Aachen University (M. Sc. RWTH) by the Faculty of Architecture.

§ 2 Objectives of the Course of Study and Language Provisions

(1) This Master's program builds on the Bachelor's programs in architecture, civil engineering, mechanical engineering, and computer science in accordance with § 2 (3) GER.

(2) The educational objectives are set out in § 2 (1, 3, 4) GER. Regulations on the objectives of the Master’s course of study are stipulated in Appendix 1.

(3) The course of study is taught in English. Insofar as individual modules are taught in another language, this is to be indicated in the module catalog.

(4) In agreement with the relevant examiner, exams may be taken in English or German.

§ 3 Admission Requirements

(1) A recognized first university degree according to § 3 (4) GER is required to be eligible for admission.

(2) To meet the subject-specific requirements and successfully complete the Construction and Robotics Master’s course of study, the applicant must provide evidence of the required skills and knowledge. The skills and knowledge must be comparable to those taught in the following Bachelor's programs at RWTH Aachen University:

 a. Computer Science
 b. Architecture
 c. Civil Engineering
 d. Mechanical Engineering

Depending on the candidate’s discipline, which will be determined based on their prior qualifications, applicants must demonstrate knowledge from the following areas and to the extent specified in order to be admitted to the Construction and Robotics Master’s course:

 a) For the discipline of Computer Science, evidence of 62 CP is required, awarded for knowledge and skills comparable to those taught in the basic modules of the RWTH Bachelor’s program in Computer Science:
Area
Module
CP

<table>
<thead>
<tr>
<th>Area</th>
<th>Module</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Computer Science</td>
<td>Programming</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Data Structures and Algorithms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Software Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Databases and Information Systems</td>
<td></td>
</tr>
<tr>
<td>Computer Engineering</td>
<td>Introduction to Computer Engineering</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Operating Systems and Systems Software</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data Communication and Security</td>
<td></td>
</tr>
<tr>
<td>Theoretical Computer Science</td>
<td>Formal Systems, Automata, and Processes</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Analysis for Computer Scientists</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>Other requirements</td>
<td>Software Lab Course</td>
<td>6</td>
</tr>
</tbody>
</table>

b) For the discipline of Architecture, evidence of 92 CP is required, earned for knowledge and skills comparable to those taught in the basic modules of the RWTH Bachelor's program in Architecture:

<table>
<thead>
<tr>
<th>Area</th>
<th>Module</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultural and Historical Basics</td>
<td>Cultural and Historical Basics I - IV</td>
<td>12</td>
</tr>
<tr>
<td>Design and Presentation</td>
<td>Design and Presentation I - II</td>
<td>12</td>
</tr>
<tr>
<td>Digital Construction Processes and Methods</td>
<td>Digital Construction Processes and Methods</td>
<td>6</td>
</tr>
<tr>
<td>Construction and Design</td>
<td>Building Construction and Building Materials</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Building Construction II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Building Technology I</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Building Technology II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integrated Project Architecture and Construction</td>
<td>10</td>
</tr>
<tr>
<td>Structures</td>
<td>Structures I</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Structures II</td>
<td></td>
</tr>
<tr>
<td>Building Planning and Design</td>
<td>Designing</td>
<td>18</td>
</tr>
<tr>
<td>Basics of Design</td>
<td>Basics of Design</td>
<td>6</td>
</tr>
</tbody>
</table>

In addition, applicants must provide evidence of 6 CP earned in the area of digital architecture. The learning content and educational objectives are software- and programming-based and can be summarized as follows:
Visual Programming:
- Modeling and editing of graphics algorithms and fundamentals of algorithmic problem solving
- Introduction to visual programming with Grasshopper, Dynamo, or similar tools

Computer-Aided Design and Engineering
- Basic understanding of 3D modeling, technical illustration, and 2D drawing. In particular:
 - Creation and editing of polygon curves,
 - NURBS curves and surfaces,
 - Subdivision and meshes,
 - Volume bodies,
 - Point clouds, and
 - Polygon meshes.
- Basic techniques of visualization and animation

Building Information Modeling
- Fundamental knowledge, introduction to object-oriented modeling of components with attribution, generation of subject-specific representations such as views, sections, and floor plans of the information model, simple visualizations of the entire building with rendering and animation

c) For the discipline of civil engineering, evidence of 89 CP is required, awarded for knowledge and skills comparable to those taught in the following basic modules of the RWTH Bachelor's program in Civil Engineering:

<table>
<thead>
<tr>
<th>Area</th>
<th>Module</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals of Mathematics</td>
<td>Mathematics I - II</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Applied Statistics</td>
<td>3</td>
</tr>
<tr>
<td>Mechanics</td>
<td>Mechanics I - II</td>
<td>16</td>
</tr>
<tr>
<td>Fundamentals in Engineering and Civil Engineering</td>
<td>Building Materials Science</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Building Physics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Building Construction II</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Structural Concrete I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Construction Informatics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Structural Analysis I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Project Management I / Construction Contract Law I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Geotechnical Engineering I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Planning Methodology</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Construction Methods I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Urban and Regional Planning</td>
<td>3</td>
</tr>
</tbody>
</table>
d) For the discipline of mechanical engineering, 88 CP from the fields of engineering, mathematics, and natural sciences (excluding practical work experience) are required, earned for knowledge and skills comparable to those taught in the following basic modules of the RWTH Bachelor’s program in mechanical engineering:

<table>
<thead>
<tr>
<th>Area</th>
<th>Module</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanics/Strength of Materials/Statics/Dynamics</td>
<td>Mechanics I</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Mechanics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanics III</td>
<td></td>
</tr>
<tr>
<td>Machine Design / Machine Elements</td>
<td>Machine Design I and Introduction to CAD</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>Machine Design I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Machine Design III</td>
<td></td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>Thermodynamics I</td>
<td>7</td>
</tr>
<tr>
<td>Heat and Mass Transfer</td>
<td>Heat and Mass Transfer I</td>
<td>6</td>
</tr>
<tr>
<td>Materials Science</td>
<td>Materials Science I</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Materials Science II</td>
<td></td>
</tr>
<tr>
<td>Automatic Control</td>
<td>Automatic Control</td>
<td>6</td>
</tr>
<tr>
<td>Fluid Mechanics</td>
<td>Fluid Mechanics I</td>
<td>6</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Mathematics I</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>Mathematics II</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematics III</td>
<td></td>
</tr>
<tr>
<td>Computer Science</td>
<td>Computer Science in Mechanical Engineering</td>
<td>5</td>
</tr>
</tbody>
</table>

(3) For admission conditional on the completion of additional requirements, § 3 (6) GER applies. If additional requirements corresponding to more than 12 credit points are imposed, admission to the Master’s course of study will be denied.

Admission to the Master’s course of study is also denied if the additional requirements include:

a) the Software Lab (Computer Science)
b) components from the areas of “Digital Construction Processes and Methods” or “Structural Engineering” or “Digital Architecture” (Architecture)
c) the modules “Building Informatics” or “Building Materials Science” or components in the areas of “Mechanics” or “Digital Construction” (Civil Engineering).
d) components from the area of Computer Science (Mechanical Engineering)

(4) For this Master’s course of study, sufficient knowledge of the English language must be proven according to § 3 (9) GER.

(5) If admission is dependent on the completion of additional requirements and one or more of these requirements can only be completed in German, then, in addition to the language skills as outlined in paragraph 4, the candidate must also provide evidence of sufficient proficiency in German pursuant to § 3 (7a) GER.

(6) Furthermore, candidates must provide evidence of professional work experience/the completion of internships in accordance with the Guidelines for Practical Professional Experience. These guidelines are part of these examination regulations (see Appendix 3). Evidence of practical work experience must be submitted by the time of admission to the Master’s thesis at the latest.

(7) § 3 (12) GER applies for determining whether the candidate meets the admission requirements.

(8) General regulations for the recognition of prior examinations and assessments are provided in § 13 GER.

§ 4
Standard Period of Study, Curriculum, Credit Points, and Scope of Study

(1) The standard period of study is four semesters (two years) full-time, including preparation of the Master’s thesis. The course of study may be commenced in either semester.

(2) Admitted candidates will be assigned to one of the following disciplines by the Examination Board, depending on their prior subject-specific qualifications:

 a. Mechanical Engineering
 b. Architecture
 c. Civil Engineering
 d. Computer Science

The discipline to which the successful applicant has been assigned will be communicated in the letter of admission.

(3) The course of study consists of a mandatory section, a core elective section, three projects, and the Master’s thesis. For successful completion of the degree program, a total of 120 credit points must be earned. The Master’s examination is comprised of the following components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Credit Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory modules</td>
<td>10 CP</td>
</tr>
<tr>
<td>Core elective modules</td>
<td>35 CP</td>
</tr>
<tr>
<td>Projects</td>
<td>45 CP</td>
</tr>
<tr>
<td>Master’s thesis</td>
<td>30 CP</td>
</tr>
<tr>
<td>Total</td>
<td>120 CP</td>
</tr>
</tbody>
</table>
The degree course, including the Master’s thesis module, is comprised of 15 to 19 modules. All modules are specified in the module catalog. The weighting (with credit points) of the assessments to be taken in the individual modules is carried out according to § 4 (4) GER.

A total of 18 CP must be acquired in the core elective section “Basics of Other Disciplines”. Students must earn at least 3 CP in all disciplines except their own discipline.

§ 5
Obligatory Attendance in Classes

According to § 5 (2) GER, obligatory attendance can only be stipulated in courses of the following type:

1. Tutorials
2. Seminars and introductory seminars ("Proseminare")
3. Colloquia
4. Lab courses
5. Excursions

Classes for which attendance is required in accordance with para. 1 shall be identified as such in the module catalog.

§ 6
Examinations and Examination Deadlines

General regulations on examinations and examination periods are stipulated in § 6 GER.

Provided that completion of modules, exams, or module components according to § 5 (4) GER is stipulated as a precondition for participation in other exams, this is indicated in the module catalog.

§ 7
Types of Examinations

General regulations on the various types of exams are stipulated in § 7 GER.

The following other forms of exams are stipulated according to § 7 (1) GER:

1. **Tutorials concluded with a colloquium** may include: Supervised design assignments on construction or planning tasks, artistic works (including portfolios), or minor academic papers (5 - 20 pages), which are presented and discussed in a colloquium. The duration of the colloquium is a minimum of 15 and a maximum of 30 minutes per candidate.

2. **Tutorials concluded with a written exam** may include: Supervised design assignments on construction or planning tasks, artistic works (including portfolios), or minor academic papers (5 - 20 pages), whose completion is a prerequisite for participation in a concluding written exam. The assignments contribute to the overall grade.

3. Creating a **portfolio**, students work on a task on the subject matter of the course during the semester under supervision, developing and completing it independently using suitable aids and tools in accordance with the instructions. The scope of work to be carried out for the portfolio shall be announced at the beginning of the course.
(3) The duration of an exam is as follows:

- 60 to 90 minutes for up to 5 CP
- 90 to 120 minutes for up to 6 or 7 CP
- 120+ minutes for 8 or more CP

(4) The duration of an oral exam is at least 15 minutes and at most 60 minutes per candidate. An oral exam may be carried out as a group exam with up to six candidates. The duration of a group exam shall be 30 to 90 minutes.

(5) As a rule, term papers range from 1 to 100 A4 pages. Students are typically given one week to three months to complete a term paper.

(6) The following applies to project work: Within projects, students conduct independent academic activities, e.g., complete constructive, functional, or theoretical academic tasks. The work results must be documented in a written paper and presented in a colloquium. Such project work is to train students in selecting and applying suitable project management tools, working in a team, organizing themselves, and coordinating group activities. For the implementation and assessment of colloquia, § 7 (8) of these regulations shall apply in conjunction with § 7 (12) GER. As a rule, project work by students is supervised by academic staff. Project work shall be carried out within one semester and is worth 12 credit points. Project activities are carried out in groups of three to five individuals, whereby the concept of the project must allow for grading of each participating student. Exceptions regarding group size are only possible under special circumstances and upon application.

(7) The scope of a written presentation is 1 to 100 pages. The corresponding presentation should be 10 to 60 minutes long.

(8) The following applies to colloquia: As a rule, attendance of the colloquium should be open to all members of the Faculty. For individually completed project work, the duration of the colloquium is a minimum of 15 and a maximum of 30 minutes per candidate. For group work, the duration of the colloquium is a minimum of 20 and a maximum of 60 minutes. External reviewers will be appointed in advance (if applicable). External reviewers are experts with outstanding, proven achievements in teaching, research, and/or practice. Upon invitation by the Faculty or by the examiners, they may also take part in the colloquium.

(9) The examiner specifies the duration of the exam and, if applicable, other modalities of the exam at the start of the course.

(10) Admission to module exams may be conditional on the successful completion of module components as examination requirements in accordance with § 7 (15) GER. For the relevant modules, this is indicated in the module catalog. At the start of term, or by the time of the first course session, the lecturer shall provide precise criteria in the CMS regarding possible improvement of grades through the completion of module components, particularly the number and type of components to be completed as well as the mode of correction and assessment.
§ 8
Assessment and Grading

(1) General regulations on the assessment of exams and the grading process are stipulated in § 10 GER.

(2) The overall grade is determined by combining all module grades and the grade of the Master's thesis according to § 10 (10) GER.

(3) In case that all module examinations of the Master's course of study have been completed within the standard period of study, one weighted module grade – except grades for project work – can be deleted, i.e. excluded from the calculation of the overall grade, according to § 10 para. 13 GER.

§ 9
Examination Board

The responsible Examination Board according to § 11 GER is the Examination Board for the Construction and Robotics Master's program. The group of the Board’s four professorial members consists of one member each from the Faculty of Architecture; the Faculty of Mathematics, Natural Sciences and Computer Science; the Faculty of Mechanical Engineering; and the Faculty of Civil Engineering. The Examination Board is chaired by the professorial member of the Faculty of Architecture. However it is not possible for the course convenor to act as chair of the Examination Board. The member of the group of academic staff and the two members of the group of students also belong to the Faculty of Architecture.

§ 10
Repeating Exams or the Master's Thesis, Loss of the Right to Take an Exam

(1) General regulations for retaking exams, the Master's thesis, and the loss of the right to take exams are stipulated in § 14 GER.

(2) Modules that can be freely selected within the core elective section of this Master's course can be replaced upon application to the Examination Board, provided that this is permitted according to the module catalog and no assessments or exams have been completed. It is not possible to change mandatory modules.

§ 11
Deregistration, Non-Attendance, Withdrawal, Deception, Non-Compliance

(1) General provisions on deregistration, non-attendance, withdrawal, deception, or non-compliance are stipulated in § 15 GER.

(2) The following applies to the deregistration from lab courses and seminars: de-registration from block courses is possible until one day before the first day of the course.
II. Master's Examination and Master's Thesis

§ 12
Type and Scope of the Master’s Examination

(1) The Master’s examination consists of

1. exams that are to be completed based on the structure of the course of study according to § 4 (2) and detailed in the module catalog, as well as

2. the Master’s thesis and the Master’s final colloquium.

(2) The order of courses is outlined in the curriculum (Appendix 2). The topic of the Master’s thesis can be agreed on after completion of 81 credit points and after the student has provided evidence of having completed the mandatory internship.

§ 13
Master’s Thesis

(1) General regulations for the Master’s thesis are stipulated in § 17 GER.

(2) With regard to supervision of the Master’s thesis, reference is made to § 17 para. 2 GER.

(3) The Master’s thesis is written in English or German.

(4) The time frame for completion of the Master’s thesis is usually a minimum of 18 and a maximum of 22 weeks. In justified exceptional cases, the turnaround time can be extended by a maximum of up to six weeks upon application to the Examination Board in accordance with § 17 (7) GER.

(5) The candidate shall present the results of the Master’s thesis at a Master’s colloquium, which, as a rule, is open to members of the relevant Faculties. If the Master’s colloquium is not to be held as outlined above, this must be approved by the Examination Board when applying for admission to the Doctoral Examination. The Master’s colloquium shall be held in accordance with § 7 (12) GER.

 i. If applicable, § 7 (11) shall apply accordingly.

(6) The scope of work for preparing and writing the Master’s thesis and for preparing the colloquium shall correspond to 30 credit points. The Master’s thesis can only be graded after completion of the Master’s final colloquium.

§ 14
Acceptance and Assessment of the Master’s Thesis

(1) General provisions on acceptance and assessment of the Master’s thesis are stipulated in § 18 GER.

(2) Two copies of the Master’s thesis are to be submitted within the deadline, printed and bound, to the Central Examination Office ZPA. Deviations from this procedure must be approved by the Examination Board. The application for approval must be made together with the application for admission to the Master’s thesis. Furthermore, the thesis must be submitted as a PDF file on a data carrier.
III. Final Provisions

§ 15
Viewing of Examination Records

Review of exam documents is carried out in accordance with § 22 GER.

§ 16

(1) These examination regulations are published as an Official Announcement of RWTH Aachen University (“Amtliche Bekanntmachungen”) and enter into force on the day after publication.

(2) These examination regulations apply to all students who are enrolled in the Construction and Robotics Master's course of study at RWTH.

Issued based on the resolutions of the Faculty Council of the Faculty of Architecture dated February 16, 2022.

It is pointed out that, in accordance with § 12 (5) NRW Higher Education Act, any claims regarding a violation of procedural or formal requirements of the regulatory or other autonomous rights of the University may no longer be asserted after one year has elapsed since the official publication of this announcement unless:

1) the announcement has not been properly published,
2) the Rectorate has objected, prior to publication, to the decision of the committee adopting the regulations,
3) the University has been previously notified about the defect of form or of procedure in a complaint, specifying the infringed legal provision and the fact which gives rise to the defect, or
4) the legal consequence of the exclusion of complaints was not pointed out in the public announcement.

The Rector of RWTH Aachen University

Aachen, dated March 18, 2022

sgd. Rüdiger

Univ.-Prof. Dr. rer. nat. Dr. h. c. mult. Rüdiger
Appendix 1:

Educational Objectives and Taught Competencies of the Construction and Robotics (CR) Course of Study

CR is an interdisciplinary and international Master of Science degree program that draws on the disciplines of the Faculties of Computer Science, Architecture, Civil Engineering, and Mechanical Engineering. CR is the first RWTH program concerned with digitalization of the construction industry. It is also the first of its kind among the TU9 and the IDEA league universities. Although there are already some degree programs that focus on the deployment of robots and automation, it is the first program of its kind for the field of construction. In other programs, the use of robots in architecture is usually limited to design and shaping. RWTH CR, by contrast, looks at the entire process that is required to close the digital gaps in this sector.

Graduates of the program are highly specialized engineers who will significantly influence future construction processes from structural planning to the construction site through material implementation, production, and manufacturing based on digital and machine-based methods. To this end, the CR program offers high-quality teaching and a focus on interdisciplinary working methods, resulting from the involvement of different Faculties.

The program aims to provide students with the following qualifications and competencies:

1. Students are able to identify and analyze complex interdisciplinary problems, break them down into subproblems, develop solutions and evaluate these.
2. Students are able to apply the learned methods within interdisciplinary work processes and to moderate group dynamics processes in a solution-oriented way.
3. Students know the relevant scientific methods and can apply them in an informed and effective way.
4. The program enables students to understand the academic discourse of various disciplines and to act as information brokers between the disciplines.
5. Students understand the key processes in the construction industry and are able to identify the potential that digitalization might bring to their subprocesses. They are able to implement these with the help of construction-organizational approaches based on digital planning and production methods.
6. Students acquire expertise to identify key technologies for automation and digitalization and to develop them further.
7. With the skills they have learned, the students have a sound knowledge of various interdisciplinary processes and technologies to address the challenges faced by the construction sector in the area of digitalization. An important role play
 a. the digitalization of materials and building products, taking into account aspects such as resources and sustainability, and
 b. innovative construction and production methods, with particular focus on future change processes in planning, preproduction, and on construction sites.
8. Through their broad knowledge of the various disciplines involved, the students are able to develop new business models for the construction industry.
The program lasts four semesters and is mainly offered in English. The program has the following structure:

Approximately half of the credit points of the first three semesters are awarded through modules which

- deepen the students’ knowledge in their discipline
- provide a basic understanding of neighboring disciplines, and
- introduce general management methods

This knowledge is applied in various semester projects. Any remaining credits are gained by completing these projects. As part of the project activities, students acquire “digital and soft skills for interdisciplinary research”, i.e. relevant techniques and skills, through supplementary self-study. The students apply the learned methods, skills, and technologies when preparing and writing the Master’s thesis.

Due to the interdisciplinary and project-focused nature of the curriculum, CR graduates are able to analyze and understand construction processes and determine where digitalization may be successfully employed.

The resulting skills profile opens up highly specialized job roles that complement the spectrum of existing professional roles and are suited to boost innovation through their structural interdisciplinarity. This results in excellent career prospects. The degree program prepares, in particular, for roles and activities in the following areas:

1. New professional role as a construction production coordinator with core competencies in digital methods
2. Interface management for highly integrated digital work processes along the entire value chain of the construction industry
3. Engineering, planning and consulting agencies with a focus on digitalization
4. Consultants for sustainable construction in the digital age
5. Building contractors
6. Manufacturers of construction machinery and equipment
7. Roles in public administration to develop guidelines for buildings and construction processes at the national and European level or to support developing countries
8. Enterprises with a focus on the preproduction of components for construction sites
9. Enterprises whose main activities concern construction sites
10. Graduates of the CR Master’s program are also qualified for fundamental scientific research and application-oriented product development. As science managers, they are able to work at the interface between various disciplines. Graduates have a good understanding of interdisciplinary research and collaboration with researchers from different professional backgrounds.
Appendix 2:

Curriculum

M.Sc. Construction & Robotics

<table>
<thead>
<tr>
<th>Course</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of other disciplines</td>
<td>Select 3 out of 4, 18 CP, ~12 SWS</td>
</tr>
<tr>
<td></td>
<td>Computer Science Basics</td>
</tr>
<tr>
<td></td>
<td>Mech. Engineering Basics</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Basics</td>
</tr>
<tr>
<td></td>
<td>Architecture Basics</td>
</tr>
<tr>
<td></td>
<td>Advanced courses 12 CP, ~6 SWS</td>
</tr>
</tbody>
</table>

Beginn im Sommersemester

Design Driven Project (Bootcamp)

Start in Summer Semester

12 CP, ~3 SWS

Research Driven Project

12 CP, ~3 SWS

Prototyping Project

12 CP, ~3 SWS

Master Thesis

36 CP

M.Sc. Construction & Robotics

<table>
<thead>
<tr>
<th>Course</th>
<th>Required Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Computer Science Basics</td>
</tr>
<tr>
<td></td>
<td>Mech. Engineering Basics</td>
</tr>
<tr>
<td></td>
<td>Civil Engineering Basics</td>
</tr>
<tr>
<td></td>
<td>Architecture Basics</td>
</tr>
<tr>
<td></td>
<td>Advanced courses 12 CP, ~6 SWS</td>
</tr>
</tbody>
</table>

Beginn im Wintersemester

Design Driven Project (Bootcamp)

Start in Winter Semester

12 CP, ~3 SWS

Research Driven Project

12 CP, ~3 SWS

Prototyping Project

12 CP, ~3 SWS

Master Thesis

36 CP
Appendix 3:

Guidelines for Practical Professional Experience

The internship is intended to complement academic study with practical activities in the area of construction and robotics and to provide students with hands-on professional experience. The internship must be completed in companies related to the construction industry and must meet both of the following activity-related criteria:

A - The job involves hands-on construction tasks on site/in prefabrication that provide insight into real-world construction processes.
B - The activity has a focus on digital / automated processes.

Students are required to find suitable internship positions themselves. The internship must be equivalent to a 2-month full-time position; at least 3 weeks at a time must be completed for activities meeting criteria A and B. Internships of less than three weeks in duration are not recognized. It is recommended that the practical work be carried out after completion of the Bachelor’s degree.

The internship, for example, may be completed in a construction company, on a civil engineering construction site, in a construction management agency, in a company with a focus on prefabrication (for buildings and components), or in a crafts enterprise in the construction industry. In addition, the internship can also be completed with construction machinery manufacturers, machine tool manufacturers focusing on the construction industry, and software manufacturers or consultants for construction and planning software in the construction industry. The focus of the activity should be on the digital/automated processes in the area of construction, from the overall organization and site management through processes in prefabrication, technical processes facilitating construction processes, including machine and tool design, to the actual construction process.

An informal written internship report must be prepared in English or German, not exceeding 4 A4 pages in length, which provides information about the activities performed. The report must be signed by the intern’s supervisor at the company. In addition, upon completion of the internship, the intern receives an internship certificate from the host company, specifying the duration of the placements in different departments and the number of days absent due to holiday or illness. The internship certificate must be issued by the internship hosting company. Certificates from recruitment agencies will not be accepted.

In order to complete the “Internship in Digitalization & Automation in Civil Engineering” module component, the signed originals of the internship certificate and the internship report have to be submitted before registering the Master’s thesis. Internship certificates that are not written in English or German must be submitted together with a certified translation into English or German. Please submit the original certificate signed by the supervisor, not a copy.

The Examination Board decides whether exceptions may be granted and whether internships in related areas may be recognized.